
ED 192 757

AUTHOR
TITLE

INSTITUTION

PUB DATE
NOTE
AVAILABLE FROM

EDES PRICE
DESCRIPTORS

DOCCHEHT RESUME

IR 008 828

Branstad, Martha A.; And Others
Computer Science and Technology: Validation,
Verification, an? Testing for the Individual
Programmer.
National Bureau of Standards (DOC) , Washington, D.C.
Inst. for Computer Sciences and Technology.
Feb BO
26p.

Superintendent of Documents, U.S. Government Printing
Office, Washington, DC 20402 (Stock No.
003-003-02159-8, $1.75).

MF01/PCO2 Plus Postage.
*Computer Programs; Design; *Evaluation Methods;
*Evaluation Needs; *Formative Evaluation; Guidelines;
*Program Development; Program Evaluation; Programing;
Program Validation; Testing

ABSTRACT
Guidelines are given for program testing and

verification to ensure quality software for the programmer working
alone in a computing environment with limited resources. The emphasis
is on verification as an integral part of the software development..
Guidance includes developing and planning testing as well as the
application of other verification techniques at each lifecycle stage.
Relying upon neither automated tools nor formal quality assurance
support, the guidelines should be appropriate for applications
programmers doing small development projects. A brief bibliography is
provided as an entry into the field of verification, validation, and
testing. (Author /BK)

4:(4c*
Reproductions supplied .by EDRS are the best 'that can be made *

i, from the Origital document,.
olci*****************************#**************************************

, COMPUTER SCIENCE & TECHNOLOGY:

(\in., VALIDATION, VERIFICATION, AND TESTING
FOR THE INDIVIDUAL PROGRAMMER

Martha A. Branstad
John C. Cherniaysky
W. Richards Adrion

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REFRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Center for Programming Science and Technology
Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, DC 20234

.0.tla' OF
CO

11

Nei147
)

Cs

z
oy

*

.0"
EAU a

U.S. DEPARTMENT OF COMMERCE, Philip M. Klutznick, Secretary
Luther H. Hodges, Jr., Deputy Secretary

Jordan J. Baruch, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued February 1980

AUG 41*.

Repoits on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal
Government for computer science and technology activities. The programs of the
NBS Institute for Computer Sciences and Technology are designed to provide ADP
standards, guidelines, and technical advisory services to improve the effectiveness of
computer utilization in the Federal sector, and to perform appropriate research and
development efforts as foundation for such activities and programs. This publication
series will report these NBS efforts to the Federal computer community as well as to
interested specialists in the academic and private sectors. Those wishing to receive
notices of publications in this series should complete and return the form at the end
of this publicaton.

National Bureau of Standards Special Publication 500-56
Nat. Bur. Stand. (U.S.), Spec. Publ. 500-56, 26 pages (Feb. 1980)

CODEN: XNBSAV

Library of Congress Catalog Card Number: 80-600005

U. S. GOVERNMENT PRINTING OFFICE

WASHINGTON: 1980

For sale by the Superintendent of Documents, U.S. Government Printing Office,
Washington, D.C. 20402

Stock No. 003-003-02159-8 Price $1.75

(Add 25 percent for other than U.S. mailing).

TABLE OF CONTENTS

Page

1. Introduction
1

2. Verification Through the Life Cycle 3

3. Testing
6

4. Requirements
9

5. Design
11

6. Construction 13

7. Operation Wo*cosew.s 18

8. Summary and General Rules 18

References
21

Bibliography
22

VALIDATION, VERIFICATION, AND TESTING
FOR THE INDIVIDUAL PROGRAMMER

Martha A. Branstad
John C. Cherniaysky
W. Richards Adrion

Guidelines are given for program testing and
verification to insure quality software for the
programmer working alone in a computing environ-
ment with limited resources. The emphasis is on
verification as an integral part of the software
development. Guidance includes developing and
planning testing as well as the application of
other verification techniques at each lifecycle
stage. Relying upon neither automated tools nor
formal quality assurance support, the guidelines
should be appropriate for applications programmers
doing small development projects.

Key wards: Testing; Program Verification; Software
Development.

1. Introduction

Testing, validation and verification of software is a
difficult and arduous task even for a manager with automated
tools and sufficient people to devote to the task. This re-
port is intended as a guideline to those who are developing .

programs and software with limited resources. It is aimed
at the production of quality software through the use of
sound verification methods, techniques, and planning. The
most common resource limited environment is that of the sin-
gle programmer working alone on a development project.

The domain of the solitary programmer is unique and
warrants a specialized guide to verification and testing.
Neither the problems nor the solutions that exist for the
development of medium or large computer systems apply.
Problems of coordinating several programmers do not exist in
this domain nor do massive integration efforts. All manage-
ment is done by the programmer. No independent internal or
external quality assurance groups exist. In addition, the
problem is usually of a size, which is intellectually manage-
able.

-1- 5

The verification and validation approaches used for
medium and large systeMs are not always applicable to the
environment of the single programmer. For instance, tool
development is stressed for large and medium systems. For
very small program development, time and cost restrictions
do not allow for specialized tool development. Although
this report assumes limited resources, tools which exist lo-
cally should not be ignored. A skilled craftsman uses the
best tools available.

This report concentrates on inexpensive verification
and testing techniques to assure the quality of work. For a
more comprehensive treatment of verification techniques and
tools the reader is referred to a forthcoming NBS Special
Publication [ADRI80].

Since we believe verification should be performed at
every development stage, this report is organized around the
life cycle stages given in Figure 1.

: : . :

: REQUIREMENTS : DESIGN : CONSTRUCTION : OPERATION & :

: MAINTENANCE :

Figure 1. Life Cycle Stages for Software Development

Section 2 introduces verification techniques and planning
which should be employed throughout the life cycle. Section
3 discusses testing in general and why it is difficult.
Section 4,5,6, and 7 discuss verification and testing during
the requirements, design, construction, and operation
stages, respectively. Section 8 summarizes and presents a
collection of general rules.

The following definiLions of common terms are used in
this document. It should be noted that some of these terms
Eay appear with slightly different meanings elsewhere in the
literature.

1. VALIDATION: determination of the correctness of the
final program or software produced from a develop-
ment project with respect to the user needs and re-
quirements. Validation is usually accomplished by
verifying each stage of the software development li-
fecycle.

2. CERTIFICATION: acceptance of software by an author-
ized agent usually after the software has been vali-
dated by the agent, or after its validity has been
demonstrated to the agent.

-2--

3. VERIFICATION: in general the demonstration of con-
sistency, completeness, and correctness of the
software at each stage and between each stage of the
development lifecycle. Requirements are verified;
successive iterations of the design specifications
are verified internally, both against the require-
ments and the earlier iterations; modules are unit
tested and verified against the design specifica-
tions; and the system undergoes intensive verifica-
tion during integration at the construction stage.
For small programs, verification is the process of
determining the correspondence between a program and
its specification. Static analysis, dynamic
analysis, and program testing are used during verif-
ication.

4. TESTING: examination of the behavior of a program by
executing the program on sample data sets.

5. PROOF OF CORRECTNESS: use of.techniques of logic to
infer that an assertion assumed true at program en-
try implies that an assertion holds at program exit.

6. PROGRAM DEBUGGING: the process of correctini, syntac-
tic and logical errors detected during coding. De-
bugging occurs before the program or module 'is fully
executable and continues until tha programmer feels
the program or module is sound and executable. Test-
ing is then used to exercise the code over a suffi-
cient range of test data to verify its adherence to
the design and requirements specifications.

2. Verification Through the Life Cycle

Problem solving is a creative process that follows a
general paradigm. The first step is to carefully define the
problem to be solved. Next a solution 1s hypothesized. The
trial solution is then scrutinized and exercised to deter-
mine if it works. Based upon the results of the third step,
modifications are made to the problem statement or to the
trial solution. The revised solution is again exercised and
scrutinized. Many iterations may occur before the problem
solver is satisfied with the solution. When this state oc-
curs, the solution is prepared in final form and final test-
ing is performed.

If the original problem is so difficult that no trial
solution comes immediately to mind, it should be transformed
into a new problem as follows:

-3-

a. Identify the problem as a particular case of a prob-
lem whose solution is known.

b. Solve a specific in.itance of the problem in the hope
that it will lead to the general solution.

Solution of this new problem proceeds as above.

Computer programming is a form Of problem solving. Its
solution paradigm is called the development life cycle and
is organized into stages. There are many life cycle charts
in the literature,[NBS76] [D0D77] but no one current chart
is appropriate for all views of the development process. The
one given in Figure 1 is representative. During the re-
quirements stage, the problem to be solved is carefully de-
fined. The design stage is when general solutions are hy-
pothesized and data and process structures are organized.
During construction the program modules are coded and de-
bugged. The modules are integrated and the interfaces de-
bugged. Testing begins as the program is exercised over the
test data selected during this and earlier stages. The pro-
gram is used and maintained during the final stages.

Some significant differences are apparent between the
problem solution paradigm described in the first paragraphs
and the development life cycle described above. The life
cycle activity is expressed as a straight line solution
whereas the previous paradigm emphasized iteration toward a
solution.. Anyone who has ever programmed knows that itera-
tion is essential. Iteration is the result of the verifica-
tion process and error assessment. Unless the correct prob-
lem is stated and the correct solution achieved at the first
try, modification and iteration occur.

Verification should accompany each stage of the
development life cycle. If the verification process is iso-
lated in a single stage then problem statement errors or
design errors discovered at that stage may exact an exorbi-
tant price. Not only must the original error be corrected
but the structure built upon it must be changed also.

Viewing each development stage as a sub-problem leads
to a more productive paradigm for program development. The
amended life cycle chart in Table 1 presents the verifica-
tion activities that accompany each development stage.

Table 1. Life Cycle Verification Activities

: Life Cycle Stage : Verification Activities

: Requirements : Determine Correctness
: Generate Functional Test Data

: Design
: Determine Correctness and Consistency :

: Generate Structural and Functional
Test Data

: Construction : Determine Correctness and Consistency :
: Generate Structural and Functional

Test Data
: Apply Test Data

: Operation
: Retest

: & Maintenance

At each stage the verification activities should include:

1. Determine the correctness and consistency of
the structures produced at the stage, and

2. Generate test data based upon structures in-troduced at that stage.
For the design and construction stages it is also necessaryto:

3. Determine that the structures are consistent
with those at the pr:vious stage, and

4. Refine and redefine test sets generated ear-lier.

-5--

Performing the above activities at each development
stage should help to locate errors when they are introduced
and will also partition the test set construction.

3. Testing

Great strides have been made toward the development of
formal verification techniques. These techniques, based on
ideas of formal semantics and proof techniques, while being
promising research avenues are not easily applied without
supporting tools (verifiers). Currently automated verifiers
are expensive, not widely available, and limited in applica-
tion. For the single programmer, testing is the most easily
applied verification technique. Testing is, as we will dis-
cuss, limited in its ability to demonstrate correctness.
Testing shows the presence of errors, and generally (ex-
cluding exhaustive testing) cannot demonstrate the absence
of errors.

One view of a program is as a representation of a func-
tion taking elements from one set (called the domain) and
transforming them into elements of another set (called the
range). The testing process is then used to ensure that the
implementation (the program) faithfully realizes the func-
tion. Since programs are frequently given inputs that are
not in the domain, they should also act reasonably on such
elements. Thus a program which realizes the function 1/x
should not fail catastrophically when x=0, but instead
should generate an error message. We call elements within
the functional domain valid inputs and those outside the
domain invalid inputs.

The goal of testing is to reveal errors not removed
during debugging. The testing process consists of obtaining
a valid value from within the functional domain or an in-
valid value from outside the functional domain, determining
the expected (correct) value, running the program on the
given value, observing the program's behavior, and finally
comparing that behavior with the expected (correct)
behavior. If the comparison is successful, the result of
the testing process has revealed no errors. If the compari-
son is unsuccessful, then through the-testing process the
errors are revealed.

The key words in the paragraph above are expected
(correct) behavior, observation, and comparison. An impor-
ter:: phase of testing lies in planning how to apply test
data, how to observe the results, and how to compare the
results with desired behavior. Applying and observing tests
are not always straightforward activities. Often extensive

-6- 10

analysis is required to determine tests which adequately
test design components, and often code must be instrumented
to provide dbservation. Determining' the desired (correct)
behavior for comparison with observed results is very diffi-
cult. To test a program, we must have an "oracle" to pro-
vide the correct responses and, to represent the desired
behavior. This is a major role of a requirements specifica-
tion. By providing a complete description of how the system
is to respond to its environment, a good requirements
specification may form a basis for constructing such an ora-
cle. In the future, executable requirements languages may
provide this capability directly, but currently they are
still basic research topics, consequently we must be content
with more ad hoc techniques. Some typical ones include:

1. Intuition.

2. Hand calculation.

3. Simulation, both manual and automated.

4. An alternate solution to the same problem.

Although we have been discussing testing through exam-
ples at the coding level, our intent is to be general enough
so that the discussion of the validation methods applies to
any stage in the program's life cycle. Testing in its nar-
rowest definition is performed during the construction
stage, and then later during operation and maintenance as
revisions are made. Derivation of test data and test plan-
ning, 'however, are activities which should cover the entire
life cycle.

If a broader meaning of testing is used, subsuming more
of the verification process, then testing is an important
activity in each life cycle stage. Simplified walkthroughs,
code reading, and most forms of requirements and design
analysis can be thought of as testing procedures. Each of
these will-be discussed in later sections.

The main problem with testing is that it reveals only
the presence of errors. A complete validation of a program
can be obtained only by testing for every element of the
domain. Since this process is exhaustive, finding the pres-
ence of no errors guarantees the validity of the program.
This technique is the only dynamic analysis technique with
this guarantee. Unfortunately, it is not practical. Fre-
quently program domains are infinite or so large as to make
the testing of each element of the domain infeasible. There
is also the problem of deriving, for an exhaustive input
set;" the expected (correct) responses. Such a task is at

-7-

12

least as difficult as (and possibly equivalent to) writing
the program itself. The goal of a testing methodology is to
reduce the potentially infinite exhaustive testing process
to a finite testing process. This is done by choosing
representative elements to exercise features of the problem
under solution or of the program written to solve the prob-
lem.

A subset of the domain used in a testing process is
called a test data set. Thus the crux of the testing problem
is finding an adequate test data set, one that covers the
domain and yet is small enough to use. This activity must
be planned and carried out in each life cycle stage. Sample
criteria for the selection of test data for test sets in-
clude:

1. The test data should reflect special proper-
ties of the domain such as extremal or ordering pro-.

perties or singularities.

2. The test data should reflect special proper-
ties of the function that the program is supposed to
implement such as domain values leading to extremal
function values.

3. The 'test data should "exercise" tae program
in a specific manner, e.g., causing all branches to
be executed or all statements to be executed.

The properties that the test data sets are to reflect
are classified according to whether they depend upon the
program's internal structure or the function the program is
to perform. In the first two cases above, the test data re-
flect functional properties and in the latter case structur-
al properties. Structural testing helps to compensate for
the inability to do F.xhaustive functional testing.

While criteria for a test set to be adequate in a
structural sense are often simple to state (such as branch
coverage), the satisfaction of those criteria can usually
only be determined by measurement. Due to the lack of
analytical methods for deriving test data to satisfy struc-
tural criteria, most structural test sets are obtained using
heuristics.

For functional analysis techniques, the major current
difficulties are in the specification of such vague terms as
extremal or exceptional value. Further, for some functional
analysis techniques, it may not be possible to obtain a
functional description from a requirewent or specification
statement. Thus once again a substantial amount of effort in.

12

test sec construction for functional considerations is of a
heuristic nature.

The general concepts of testing will be discussed below
as they apply to each life cycle stage. Keep in mind
throughout the discussions that planning is the key to suc-
cessful testing.

4. Requirements

INVEST IN ANALYSIS AT THE
BEGINNING OF' THE PROJECT

Why bother with formal requirements for a small program
written by a single programmer? The answer is that an in-
vestment in careful analysis at the very beginning of the
project can reap benefits even for the programmer working
alone. Having a clear, concise statement of the problem to
be solved will facilitate construction, communication, error
analysis, and test data generation.

What should be included in the requirements or problem
statement? The following list suggests the information that
should be recorded and the decisions that should be made at
this stage in the development.

1. Functionally, what the program is to do.

2. What the input will be like such as the
form,ormat,data types, and units for the input.

3. The form, format, data types, and units for
the output.

4. How exceptions, errors, and deviations are
to be handled.

5. For scientific computations, the numerical
method or at least the required accuracy of the
solution.

6. The computer environment required or as-
sumed, e.g. the machine, operating system, and im-
plementation language.

-9--

13

Making and recording decisions on the issues listed
above are only part of what should be done during, the re-
quirements stage of development. In addition, the core of
the test data set should be established and error analysis
should be performed.

START DEVELOPING THE TEST
: SET AT THE REQUIREMENTS STAGE :

The requirements state what the program is to do. Data
should be generated which will determine if the requirements
have been met. To do this the input domain should be parti-
tioned into classes of values that the program will treat in
a similar fashion. For each class a representative element
should be included in the test data. Boundary values, ele-
ments at the edge of the input class, frequently require
special treatment by the program and are thus a likely
source of error. Therefore, boundary values for each class
should be included in the test data set. In addition, any
non-extremal input values that will require special handling
by the program should be included in title test data set. Out-
put classes should also be covered by input which causes
output at each class boundary and within each class. In-
valid input values require the same analysis provided for
valid values.

For all elements in the test data set expected values
should be determined. That is, how the program should treat
each of the elements should be decided anti recorded. The
test data set and accompanying expected values form the core
of the test set that will be refined to use with the imple-
mentation code. The test set generated during the require-
ments stage will address the functional aspects of the pro-
gram. Data to test the structural aspects will be generated
during the design and implementation stages.

Generating test data at this stage also serves another
useful purpose, that of insuring that the requirements are
testable. Requirements for which it is impossible to define
test data or to determine the expected value for *the test
data are ineffective requirements and should be reformulat-
ed.

_14
-10-

: ARE YOU SOLVING THE CORRECT :

PROBLEM?

Generating the test set is only part of the verifica-
tion activity that should accompany the requirements stage.
Analysis for the correctness, consistency , and completeness
of the requirements should also be done. Whether the correct
problem is being solved should be considered. Perhaps a more
general solution or a more specific solution would be more
advantageous. The requirements should be carefully checked
for conflicts and inconsistencies. The possibility of miss-
ing cases :inould be considered. Have functions been omitted
that should have been included? Too frequently the results
of such analysis aren't obtained until the program is exe-
cuted with test data. At the implementation stage the cost
of requirements modification is high and the rework is
painful. Therefore, error analysis early in the development
cycle is advocated.

5. Design

WRITE AN EXPLICIT DESIGN
STATEMENT

Even for small projects, the programmer should spend
the time and energy to produce an explicit statement of the
design, for such a document will aid construction, communi-
cation, error analysis, and test data generation. The re-
quirements and design documents together should describe the
problem to be solved and organization of the solution. They
should convey enough information so that the reader can
determine what the program is to do and how it is to do it
without having to resort to code reading.

Several different design techniques and methodologies
have received wide coverage recently [EDP79]. Whether you
use one of those or your own technique, the following infor-
mation should be included in the design.

1. Principle data structures should be speci-
fied since the way key data are organized frequently
shapes the structure of the entire program.

15

2. Functions, algorithms, heuristics, or spe-
cial techniques used for processing should be
recorded.

3. The basic program organization should be
stated. How the p.:,-,gram is to be sub-divided or
modularized and the internal aid external interfaces
should be specified.

4. Additional information may be needed for
particular projects.

Verification activity is very important in the design
stage. If faults are not found until after the program is
:coded, fixes are often more costly and less satisfactory.
yey.i,fication at the design stage follows the steps listed
in section 2.

A. The design should be analyzed to determine
if it is complete and consistent. The individual al-
gorithms, heuristics, and special techniques should
be checked to see if they really work for the given
probleva and data. This could involve hand calcula-
tions for representative test cases. The total pro-
cess should be ana ,lyzed to determine that no steps
or special cases have been overlooked. The module
interfaces should be examined to assure that calling
routines provide the information and environment re-
quired by the called routines and in the form, for-
mat, and units assumed. The data structure should
be examined for inconsistencies or awkwardness.
Input/output handling should be carefully analyzed
for it is a frequent source of error.

B. The design should be analyzed to determine
if it satisfies the requirements. Determine if all
constraints pecified by the requirements have been
met. Determine if the design assumes the same form,
format and units for input and output that are stat-
ed in the requirements. Check that all functions
listed in the requirements have been included in the
design. Selected test data generated during the re-
quirements should be hand simulated to determine if
the design would produce the expected values;

C. Test data based upon the design should be
generated.During the design stage data structures,
functions, algorithms, heuristics, and the general
program structure have all been established; data to
test these structures and functionp should also be
generated. Standard, extremal, and special values

-12- 1 6

for the data structures should be included in the
test data set. Boundary value analysis should be ap-
plied to both the structure and the values of the
data structures. For example, if array size can
vary, then a single element array, a maximum size
array, and special valued arrays should be candi-
dates for the test data set. Test data for external-
ly visible functions has been generated at the re-
quirements stage. For the internal functions intro-
duced during design, test data should also be gen-
erated. The input and output analysis suggested in
Section 4 should be used to generate the test data
for these functions. If not already accomplished by
the existing test data, new tests should be generat-
ed to exercise the modular structure of the design.
For all the data in the test data set, expected
values should be calculated. The test data generat-
ed during the design stage should test both the
structure and the internal functions of the design.

D. The test set generated during the require-
ments stage should be re-examined in view of the
design. Since additional decisions have been made
during design, it is possible that data and expected
values generated during requirements can be refined
and made more exact.

Many programmers and managers want to rush directly tothe coding stage when they begin a new project. However, the
time spent in careful analysis during the first two life cy-cle stages can increase the quality of the total project.
Following the above four steps will greatly facilitate pro-
gram verification. Steps one and two should also be carried
out by a colleague; specific techniques will be discussed in
Section 6. It is so difficult to find your own errors that
an independent analysis is strongly advocated.

5. Construction

The construction or coding stage is what most people
they think of programming. However, if the re-

quir.rits and design have been carefully done, the coding
should be straightforward, almost mechanical. Since so much

.

has been written about software engineering, structured pro-
gramming, and various coding techniques, little will be said
here except that we assume the programmer is using good pro-
gramming techniques (ZELK791.

-117

CHECK FOR CONSISTENCY
WITH DESIGN

The first step in verification during the construction
stage is to determine if the code is consistent with the
design. Both code and design should exhibit the same modular
structure and have the same module interfaces. Both should
utilize the same data structures and implement the same
functions using the same algorithms. Input/output handling
in the code should be consistent with the decisions made
during the design stage.

KEEP YOUR TESTS

Testing should be performed in an organized and sys-
tematic manner. Test runs should be dated, annotated, and
saved. Not infrequently testing is slow and ineffective be-
cause it is performed in a random manner. The programmer
manufactures test data on the spot and runs tests as the
spirit moves him using his memory as the only record of what
has been previously tested. Such random testing will produce
random results. The systematic development of the test set
through the requtrements,-design, and construction stages
helps to produce' an adequate test set; however, the actual
execution of the program using the test data must alsb be
performed in an orderly manner. A plan or schedule of which
code pieces or modules are to be tested and in what order
can be used as a check list to help the programmer organize
his efforts. All test data and runs should be saved after
being dated and suitably annotated. If errors' are found and
changes made to the program, retesting must be performed.
Not only must the given test be rerun, but also any tests
previously run and passed that involve the erroneous segment
must be rerun since the program modifications may have in-
validated the previous tests.

ASK A COLLEAGUE
FOR ASSISTANCE,

During the construction stage, code exists and testing
can begin. However, additional manual analysis of the code
should precede the first test runs. Desk checking, in which
a programmer sits at a desk reading his code, looking for
errors, is not a particularly effective verification

-14-

18

technique. Usually programmers are poor at finding their ownerrors. Fundamental logic errors and missing cases elude
the creator/programmer for if it seemed right when it wasdesigned, it still seems right. As for syntactic errors, the
programmer tends to see what was meant rather than what wascoded.

Inspection, an exercise in disciplined error hunting,
and walk-through,a form of manual simulation, are formalized
manual techniques based upon desk checking. In both tech-niques a team of programmers examine the code (or design orrequirements) and look for errors in a very organizedmanner.

For small programs, a technique partway between deskchecking and inspections or walk-throughs seems appropriate.
An independent party, usually a colleague, should be askedto analyze the development product at each stage, the re-
quirements, the design, and the code. The programmer shouldexplain the product to his colleague, while the colleagueplays devil's advocate, questioning the logic and searchingfor errors. A check list of likely errors should be used to
guide the search. The second party aspect of this techniqueis essential to its success for a new perspective is needed
to locate the errors the programmer cannot perceive.

USE AVAILABLE TOOLS

At last the code is ready to be run. the programmershould be familiar with the various compilers and inter-
preters available on his system for the language he is us-ing. If more than one exists, they undoubtedly differ in
their error analysis and code generation capabilities. Some
processors do syntax checking only with no code generation;
others perform extensive error checking such as array boundchecking and provide aids such as cross reference tables.
If debugging compilers exist on your system, it is very
helpful to use them.

APPLY STRESS TO THE PROGRAM :

Testing should exercise and stress the program struc-ture, the data structures, the internal functions, and the
externally visible functions or functionality. Both validand invalid data should be in the test set. The test set,
which consists of test data and expected values generated
during the requirements and design stages, forms the core of

-15-

19

VO

the test set to be used during construction. Additional
data may be required to test structural and functional de-
tails visible only in the code. The test set generated dur-
ing the first two life cycle stages may require refinement
or redefinition in order to be applied to the code. The test
data should be organized to conform with the general test
organization to be used during construction. Intermediate
values may be required in order to test incox.'ete pieces of
code or individual modules. Testing reqt.ires as much
creativity as does design.

TEST ONE AT A TIME

As-with many tasks, divide and conquer is the rule for
testing. Pieces of code, individual modules, and small col-
lections of modules are exercised separately before they are
integrated into the total program. Only after the pieces
have been found error-free are they joined together, one at
a. time, and tested as a unit. It is easier to isolate errors
when the number of potential interactions is kept small.

In order to test the smaller units of code, some addi-
tional code may be required. If the testing is done bottom-
up, then drivers will need to be written. For small programs
this may only entail producing code to call a procedure so
the interface and control transfer can be tested. If con-
struction is proceeding top-down, then stubs will be needed.
In this case incomplete or dummy called routines must be
constructed so the flow of control and argument passage can
be tested before the entire program has been constructed.
Often there is a reluctance with small programs to want to
generate any "unnecessary" code solely for testing. However,
it is wise to organize the testing so that small pieces of
code are exercised and deemed error-free before aggregating
them into ever larger units.

Instrumentation, the insertion of code into the program
solely to measure various program characteristics, can be
useful for program verification. For medium and large scale
projects tools are often acquiLed or developed which will do
automatic instrumentation. For small projects the programmer
can do is own instrumentation. Array bound checks, checking
of loop control variables, determining if key data values
are within permissible ranges, tracing the execution, and
counting the number of times a grout. of statements is exe-
cut ed are examples of the types of analysis that can be per-
formed using instrumentation.

-16-
20

ARE YOU EVER'THROUGH?

How do you know when you have tested enough ?. That's afundamental question that unfortunately has no clear cutanswer. If you are still finding errors everytime you exe-cute your program, then testing should continue. As a matterof fact, errors tend to cluster, so those modules that ap-pear particularly error prone should receive special scru-tiny. If you have run your complete test set against theprograu and have found no more errors, it does not mean thatyour program is error free. Perhaps your test set is incom-plete. The metrics that tend to be used to measure testingthoroughness include: statement testing, branch testing, andpath testing. Statement testing determines if each statementin the program has been executed at least once. Branch test-ing determines if each exit from each branch in the programhas been executed at least once. Path testing determines ifall logical paths through the program, which may involve re-peated execution of various segments, have been executed atleast once. Each succeeding metric subsumes the others.Since the number of paths grows exponentially with thenumber of decision points, path testing tends to be toocostly in time and money to utilize and often impossible todo. Statement testing , although known to be theoreticallyinsufficient, is the coverage metric most frequently usedbecause it is relatively simple to implement.

If no dynamic analysis tool that measures test coverag-eis available on your system, it is a straight forward exer-cise to instrument your own program to calculate statementcoverage. Identify each program point into which control canbe transferred and establish an array with as many slots asthere are transfer points. At each transfer point insert astatement which will increment the appropriate slot in thearray. The final values in the array can be printed at pro-gram exit. This technique will not only provide an indica-tion of test coverage but will also show the portions ofyour program with the heaviest usage. Statement testing willnot guarantee your program is correct; however, it is atesting minimum that 4,s frequently used for if code has nev-er been exercised, it is difficult to know if it is errorfree.

It should be emphasized that the amount of testing willdepend upon the cost of an error. Critical programs or codesegments will require more thorough testingithan more insig-nificant functions do.

. Operation.

Why talk about testing during operation? For many pro-
duction programs 50 to 85% of the total life cycle costs are
accrued during the maintenance stage that is coincident with
operation. These costs do not imply error studded programs
that take forever to fix but evolving programs that are con-
stantly undergoing modification. Even for small programs
corrections, modifications, and extensions are bound to oc-
cur. Any time there is modification or change, testing is
required. Testing during maintenance is termed regression
testing. The systematic approach recommended in the rest of
the report facilitates regression testing since much of the
work should already have been done. The test set, test plan,
and test results for the original program should exist.
Modification to accommodate the program changes must be done
and then all portions of the program affected by the modifi-
cations must be retested. After regression testing is com-
plete, the program and test documentation must be updated to
reflect the changes. To ignore the need to maintain con-
sistent and current documentation on both programs and com-
pleted tests is to insure increasing instability of the pro-
grams at each successive modification.

8. Summary and General Rules

We have proposed a general approach to developing
software in an environment with limited resources. This ap-
proach stresses that verification must take place throughout
the development process. Even for relatively small, non-
critical projects lifecycle planning for software quality is
very important. A programmer'S task of demonstrating that he
has produced reliable and consistent code can be much sim-
plified by beginning early to develop and plan verification
activities.

The approach we recommend relies heavily on testing as
the main verification technique with code reading and in-
spection techniques employed as supporting activities. Test-
ing cannot be performed as an after-the-fact activity. Test
data sets are derived throughout the development process be-
ginning at the requirements stage. It is at the first stage
that test data can be derived from functional analysis of
the system requirements. Inconsistency in the requirements
is often detected during this analysis. During the design
stage, test data which stress the program control and data
structures are generated. When the final code generation
and construction stage begins, the test data set should be
nearly complete. The remaining test data should be chosen to

-18-

22

exercise those "special functions" used by the programmer inthe actual implementation. Care should be taken to insure
that the data and control structures represented by the fi-nal programs are covered as extensively as possible by thetest data.

The actual testing should proceed in an organized
manner with small pieces being tested individually, then ag-gregated and retested. Test coverage metrics are very useful
for determining a "confidence level" for the test data. Such
metrics can be implemented by instrumenting your own code.Since testing is a process aimed at discovering errors, it
must be noted, that for each design or code modification
resulting from such a discovery, retesting is necessary. The
process becomes an iterative one towards a goal of achieving
a high level of confidence in the finished product through
intelligent testing.

Inspection, close reading and analysis of the code, and
manual simulation are important verification techniques
which should also be used throughout development. Thoroughanalysis and hand simulation are employed during both re-
quirements and design in order to discover errors early inthe development. Each stage must be analyzed for consisten-
cy with prior stages and for internal consistency. Youshould seek independent review of your work by having a col-
league inspect your design and code for errors. We believe
that quality can be improved through planning, a staged
development, and the use of sound verification techniques ateach stage.

The following list summarizes the approach presented in
this report.

1. Generate test data at all stages and in par-
ticular the early stages.

2. Develop a means for calculating the expected
values for test data to compare with test results.

3. Inspect requirements, design, and code for
errors and for consistency.

4. Be systematic in your approach to testing.

5. Test pieces and then aggregate.

6. Save, organize, and annotate test runs.

7. Concentrate testing on modules that exhibit
the most errors and on their interfaces.

8. Retest when modifications are made.

9. Discover and use available tools on your
system.

References

[ADRI80] ADRION, W. R.; BRANSTAD, M. A.; and CHERNIAVSKY,
J. C., forthcoming National Bureau of Standards,
Institute for Computer Science and Technology
Special Publication, Verification and Validation,
1980.

[D0D77] Department of Defense, Automated Data Systems
Documentation Standards, Standard 7935.1-S, Sep-
tember 1977.

rEDP79] "Program Design Techniques," EDP ANALYZER, Vol.
17 No. 3, Canning Publications,Inc., March 1979.

[NBS76] National Bureau of Standards, Guidelines for
Documentation of Computer Programs and Automated
Data Systems, Federal Information Processing
Standards Publication 38, February 1976.

[ZELK79] ZELKOWITZ, M. V., "Perspectives on Software En-
gineering," ACM Computing Surveys, Vol. 10 No. 2
(June 1978), 197-216.

-21-

Bibliography

This collection is meant to provide the reader with an entry
into the field of verification, validation, and testing.
Each document lists further references and An A.nnotated hi-
bliograghy on validation appear' in [YEH77].
[G00D75] GOODENOUGH, J. B.; and GERHART, S., "Toward a

Theory of Test Data Selection," IEEE Transactions
on Software Engineering 1,2 (June 1975) ,

156-173.
[HETZ73] HETZEL, W. C. (Ed.), Program Test Methods,

Prentice-Hall, Engelwood Cl...ffs, N.J., 1973.
[KERN78] KERNIGHAN, B. W.; and PLAUGER, P. J., The

Elements of Programming Style, McGraw-Hill, New
York, 1978.

[MILL78] MILLER, E.; and. HOWDEN, W. E., Tutorial: Software
Testing and Validation Techniques, IEEE Computer
Society, Long Beach, CA, 1978.

[MYER79] MYERS, G. J., The Art of Software Testing, John
Wiley & Sons, New York, 1979.

[YEH771 YEH, R. T. (Ed.), Current Trends in Programming
Methodolo &y Vol. 2, Prentice-Hall,Engelwood
Cliffs, N.J., 1977.

